Linearity of saturation for Berge hypergraphs
نویسندگان
چکیده
منابع مشابه
Extremal Results for Berge Hypergraphs
Let G be a graph and H be a hypergraph both on the same vertex set. We say that a hypergraph H is a Berge-G if there is a bijection f : E(G) → E(H) such that for e ∈ E(G) we have e ⊂ f(e). This generalizes the established definitions of “Berge path” and “Berge cycle” to general graphs. For a fixed graph G we examine the maximum possible size (i.e. the sum of the cardinality of each edge) of a h...
متن کاملForbidden Berge Hypergraphs
A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F , we say that a (0,1)-matrix A has F as a Berge hypergraph if there is a submatrix B of A and some row and column permutation of F , say G, with G 6 B. Letting ‖A‖ denote the number of columns in A, we define the extremal function Bh(m,F ) = max{‖A‖ : A m-rowed simple matrix and no Berge hypergraph F}. We determine...
متن کاملTurán numbers for Berge-hypergraphs and related extremal problems
Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this paper we establish new upper and lower bounds on exr(n,Berge-F ) ...
متن کاملTurán numbers for Berge - hypergraphs and related 1 extremal problems
4 Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection 5 f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually 6 denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph 7 with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this 8 paper we establish new upper and lower bounds on exr(n,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2019
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2019.02.002